Глава 12. СЕМЕЙСТВО МИКРОКОНТРОЛЛЕРОВ С8051F32x

12.1. Обобщенная структура и состав семейства C8051F32x

Семейство C8051F32x состоит из 2 микроконтроллеров с номерами 320 и 321[18]. Состав семейства и его основные характеристики приведены в таблице 12.1.

Таблица 12.1.

Состав семейства C8051F32x

Обобщенная структура микроконтроллеров семейства C8051F32x, представленная на рис.12.1, состоит из трех функциональных групп: аналоговой периферии (Analog Peripherals), цифровой периферии (Digital Peripherals or Digital I/O) и высокопроизводительного контроллерного ядра (High-Speed Controller Core). Основными структурными отличиями этого семейства являются:

- Наличие высокопроизводительного контроллерного ядра СІР-51;
- Наличие аппаратного интерфейса USB (спецификация 2);
- Наличие линейного регулятора входного напряжения питания от 4.0 до 5.25 В;
- Наличие 17(13)-канального десятиразрядного аналого-цифрового преобразователя ADCO;
- Встроенная система отладки с оригинальным двухпроводным интерфейсом Cygnal. Система позволяет производить отладку с имитацией всех ресурсов и программированием собственно Flash памяти отлаженной программой;
- Прецизионный встроенный генератор до 25 MHz..

Микроконтроллеры семейства отличаются только типом корпуса и соответственно количеством линий ввода/вывода.

Оригинальный интерфейс C2 использует только два вывода корпуса, которые мультиплексированы с линиями ввода/вывода и могут использоваться пользователем для общесистемных целей.

В состав группы аналоговой периферии входят: аналого-цифровые преобразователи ADC0 с разрядностью 10 бит; аналоговый входной мультиплексор AMUX на 17(13) входов; линейный регулятор входного напряжения; источник опорного напряжения используется либо внешний, либо в качестве источника используется напряжение питания; встроенный датчик температуры с точностью ± 3 С°; два аналоговых компаратора с программируемым гистерезисом и прецизионный монитор питания.

Группа узлов цифровой периферии семейству:

Функциональная группа ядра микроконтроллера содержит: высокоскоростное ядро, работающее при частотах до 25МГц, обеспечивающее пиковую производительность до 25МГРS; встроенный программируемый калибруемый генератор тактовой частоты (от 2 до 25 МГц); тактовый генератор с внешним кварцевым резонатором (RC - цепочкой, конденсатором или входом внешнего генератора); узел отладки и программирования - C2; 256 + 2048 байт оперативной памяти; 16К встроенной Flash памяти программ/данных; охранный таймер WDT (Watchdog Timer); контроллер прерывания на 16 векторов.

1

Рис.12.1. Обобщенная структура микроконтроллеров семейства C8051F32x

Все микроконтроллеры семейства работают при напряжении питания от 2,7B до 3,6B в индустриальном диапазоне температур от -45 до +85C°. Линии портов ввода/вывода, сброса и C2 работоспособны при питании 5B.

12.2. Функциональные схемы, типы корпусов и назначение выводов

Микроконтроллеры семейства C8051F32х имеют различное количество выводов (соответственно и корпус). Микроконтроллер C8051F320 выпускаются в корпусе со 32 выводами - LQFP-32 (см. рис.12.2). Микроконтроллер C8051F321 выпускаются в корпусе с 28 выводами - MLP-28 (см. рис.12.3). Функциональные схемы микроконтроллеров показаны на рис.12.4 - 12.5. Назначение выводов микроконтроллеров семейства C8051F32х приведено в таблице 12.2.

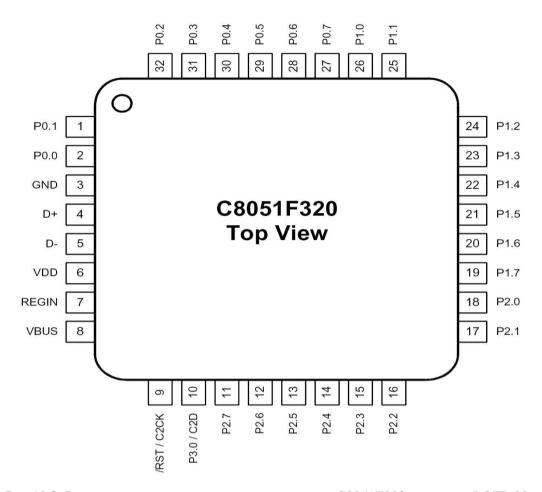


Рис.12.2. Расположение выводов микроконтроллера C8051F320 в корпусе LQFP-32

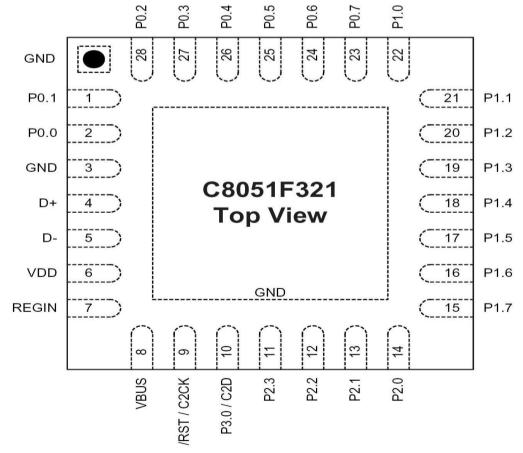


Рис.12.3. Расположение выводов микроконтроллера C8051F321 в корпусе MLP-28

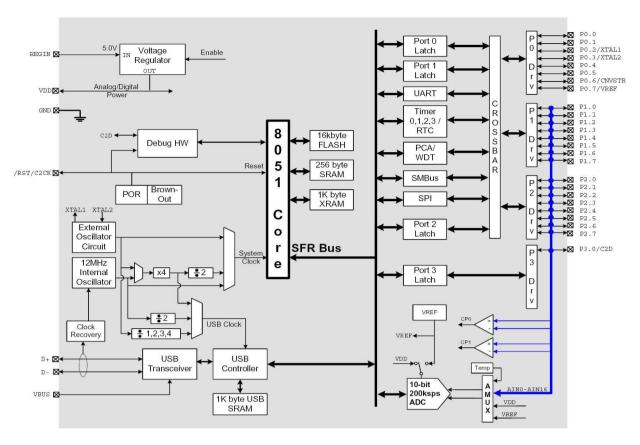


Рис.12.4. Функциональная схема микроконтроллера C8051F320 в корпусе LQFP-32

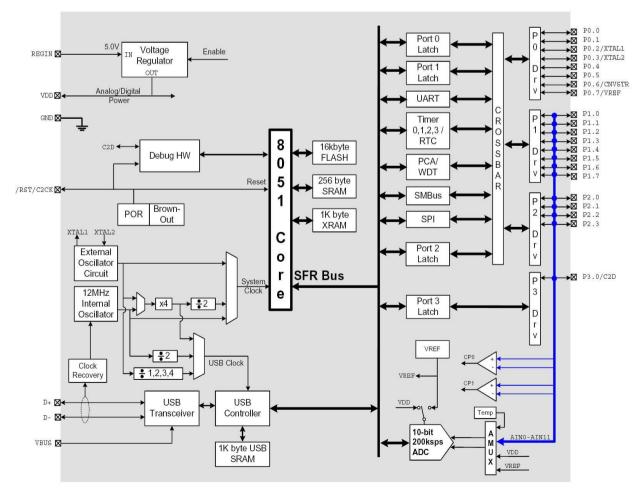


Рис.12.5. Функциональная схема микроконтроллера C8051F321 в корпусе MLP-28

Таблица 12.2.

Сводная таблица нумерации, названия и назначения выводов семейства C8051F32x Имя Выводы Тип Описание

Имя	Выводы		Тип	Описание		
	F320	F321				
VDD	6	6	A I/O	Вход напряжения питания (должно быть от $+2.7$ до $+3.6$ V) или выход линейного регулятора 3.3 V		
GND	3	3		Цифровая земля		
RST/	9	9	D I/O	Сигнал сброса с открытым истоком. Внешний сброс осуществляется подачей на этот вход низкого потенциала на время более 15 мкс		
С2СК			D I/O	Тактовый сигнал для интерфейса С2 программирования и отладки		
P3.0/	10	10	D I/O	Линия ввода/вывода Port 3.0/ (инверсная)		
C2D			D I/O	Двунаправленная линия данных интерфейса С2 программирования и отладки		
REGIN	7	7	Power In	Вход линейного регулятора напряжения питания (5 V)		
VBUS	8	8	D In	Измерительный вход. Должен быть соединен с одноименной линией интерфейса USB. Наличие на этом выводе уровня напряжения +5 V свидетельствует о том, что интерфейс подключен.		
D+	4	4	D I/O	Линия интерфейса USB D+		
D-	5	5	D I/O	Линия интерфейса USB D-		
P0.0	2	2	D I/O	Линия ввода/вывода Port 0.0/ (инверсная)		
P0.1	1	1	D I/O	Линия ввода/вывода Port 0.1		
P0.2/	32	28	D I/O	Линия ввода/вывода Port 0.2/ (инверсная)		
XLAT1			A In	Внешний вход тактовой частоты		
P0.3/	31	27	D I/O A Out	Линия ввода/вывода Port 0.3/ (инверсная)		
XLAT2			D In			
P0.4	30	26	D I/O	Линия ввода/вывода Port 0.4		
P0.5	29	25	D I/O	Линия ввода/вывода Port 0.5		
P0.6/	28	24	D I/O	Линия ввода/вывода Port 0.6/ (инверсная)		
CNVSTR				Вход запуска преобразования АДС0		
P0.7/	27	23	D I/O	Линия ввода/вывода Port 0.7/		
	27	23				
VREF			A I/O	Линия источника опорного напряжение		
P1.0	26	22	D I/O A In	Линия ввода/вывода Port 1.0 или аналоговый вход		
P1.1	25	21	D I/O A In	Линия ввода/вывода Port 1.1 или аналоговый вход		
P1.2	24	20	D I/O A In	Линия ввода/вывода Port 1.2 или аналоговый вход		
P1.3	23	19	D I/O A In	Линия ввода/вывода Port 1.3 или аналоговый вход		
P1.4	22	18	D I/O	Линия ввода/вывода Port 1.4 или аналоговый вход		
P1.5	21	17	A In	Линия ввода/вывода Port 1.5 или аналоговый вход		
P1.6	20	16	A In D I/O A In	О Линия ввода/вывода Port 1.6 или аналоговый вход		
P1.7	19	15	D I/O	O Линия ввода/вывода Port 1.7 или аналоговый вход		
P2.0	18	14	A In	Линия ввода/вывода Port 2.0 или аналоговый вход		
P2.1	17	13	A In D I/O	Линия ввода/вывода Port 2.1 или аналоговый вход		
1 4.1	1 /	13	A In	линия воода/вывода 1 он 2.1 или аналоговый вход		

P2.2	16	12	D I/O	Линия ввода/вывода Port 2.2 или аналоговый вход
			A In	
P2.3	15	11	D I/O	Линия ввода/вывода Port 2.3 или аналоговый вход
			A In	
P2.4	14		D I/O	Линия ввода/вывода Port 2.4 или аналоговый вход
			A In	
P2.5	13		D I/O	Линия ввода/вывода Port 2.5 или аналоговый вход
			A In	
P2.6	12		D I/O	Линия ввода/вывода Port 2.6 или аналоговый вход
			A In	
P2.7	11		D I/O	Линия ввода/вывода Port 2.7 или аналоговый вход
			A In	

12.3. Электрические параметры и предельные режимы эксплуатации

Общие электрические характеристики семейства приведены в таблице 12.3.

Таблица 12.3.

Общие электрические характеристики семейства C8051F32x

Параметр	Условия	MIN	HOPMA	MAX
Напряжение питания аналоговой час-	Напряжение питания аналоговой	2.7	3.0	3.6
ти, V	части должно быть больше 1V для			
	работы супервизора питания			
Ток потребления аналоговой	VREF, ADC, DACs и компараторы		1,7	2
части, тА	включены			
Ток потребления при выключенной	VREF, ADC, DACs, компараторы		5	20
аналоговой части, μΑ	и генератор выключены			
Допустимая разница напряжений пи-	VDD - VA+			0.5
тания аналоговой и цифровой частей,				1 4
V				`
Напряжение питания цифровой части,		2.7	3.0	3.6
V				
Ток потребления цифровой части в	VDD = 2.7V, Clock=25MHz		5	
активном режиме, mA	VDD = 2.7V, $Clock=IMHz$		0.3	
	VDD = 2.7V, $Clock = 32kHz$		14 μΑ	
Ток потребления цифровой части в	Генератор выключен		3.2	
пассивном режиме, µА				
Напряжения сохранения данных в			1.5	
RAM, V				
Рабочий тепературный диапазон, °С		-40		+85

Предельные режимы эксплуатации приведены в таблице 12.4.

Таблица 12.4.

Предельные параметры семейства C8051F32x

предельные параметры семенетьа 2005 п 32х	
Предельная температура корпуса	-55 - 125°C
Предельная температура хранения	-65 - 150°C
Предельные напряжения на всех выводах кроме VDD и Port I/O по отношению	-0.3V - (VDD + 0.3V)
к DGND	
Предельные напряжения на всех выводах Port I/O и RST/ по отношению к	-0.3V - 5.8V
DGND	
Предельное напряжение на вывода VDD по отношению к DGND	-0.3V - 4.2V
Максимальный общий ток через VDD, GND	500mA
Максимальный выходной ток через любой вывода Port I/O	100mA

Превышение параметров, указанных в таблице, может привести к повреждению изделия. Не рекомендуется эксплуатация изделия в предельных режимах, т.к. это приводит к снижению надежности и ресурса.

12.4. Подсистемы семейства C8051F32x

Микроконтроллеры семейства C8051F32х имеют типовое ядро CIP-51 фирмы Cygnal с подсистемой отладки и программирования C2 и набором инструкций, описанные в разделах 2.1-2.3. Особенностями ядра данного семейства является наличие у всех микроконтроллеров семейства четырех шестнадцатиразрядных таймеров/счетчиков и уменьшенное количество линий ввода/вывода 29(25). Ядро CIP-51 имеет Flash память объемом - 16К и стандартную конфигурацию адресов программ и данных.

Ядро оснащено встроенной памятью данных с произвольным доступом (RAM) объемом 256 байт (0x00-0xFF).

Младшие 128 байт (0x00-0x7F) доступны инструкциям с прямой и косвенной адресацией, регистры специальных функций SFR доступны только инструкциям с прямой адресацией, а старшие 128 байт (0x80-0xFF) - только инструкциям с косвенной адресацией. Первые 32 байта (0x00-0x1F) адресуются как четыре банка регистров общего назначения, а следующие 16 байт (0x20-0x2F) - имеют битовую адресацию.

Кроме этого, микроконтроллеры дополнительно имеют 1024 байта оперативной памяти во внешнем адресном пространстве памяти данных. Этот 1К блок может быть доступен с помощью инструкции MOVX.

12.5. Подсистема регистров специальных функций SFR

Прямо адресуемое адресное пространство памяти данных 0x80-0xFF в стандартном 8051 микроконтроллере занято регистрами специальных функций (SFRs). С помощью этих регистров осуществляется управление и обмен данными между ресурсами ядра CIP-51 и периферией. Регистры специальных функций ядра CIP-51 с одной стороны соответствуют регистрам стандартного 8051, а с другой - дополнены возможностями конфигурирования и обмена данными с оригинальными подсистемами микроконтроллеров Суgnal. Карта регистров SFR представлена в таблице 12.5.

Карта адресов регистров специальных функций SFR семейства C8051F32x

Таблица 12.5.

F8	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	PCA0CPL4	PCA0CPH4	VDM0CN
F0	В	P0MDIN	P1MDIN	P2MDIN	P3MDIN		EIP1	EIP2
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	PCA0CPL3	PCA0CPH3	RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	EIE2
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	PCA0CPM3	PCA0CPM4	
D0	PSW	REF0CN			P0SKIP	PISKIP	P2SKIP	USB0XCN
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	
B8	IP	CLKMUL	AMX0N	AMX0P	ADC0CF	ADC0L	ADC0H	
B0	P3	OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE	CLKSEL	EMI0CN					
A0	P2	SPI0CFG	SPI0CKR	SPI0DAT	P0MD0UT	P1MD0UT	P2MD0UT	P3MD0UT
98	SCON0	SBUF0	CPT1CN	CPT0CN	CPT1MD	CPT0MD	CPT1MX	CPT0MX
90	PI	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	USB0ADR	USB0DAT
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKC0N	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

В таблице 12.6. регистры приведены в алфавитном порядке. Пропущенные адреса зарезервированы. Таблица 12.6.

Таблица адресов регистров специальных функций в алфавитном порядке

Название регистра Адрес Описание функционального назначения регистра Разлел регистра Описания ACC 0xEO3.6.24 Аккумулятор ADC0CF 0xBC Конфигурация ADC0 11.7.3 ADC0CN 0xE8 11.7.6 Управление ADC 0 ADC0GTH 0xC4 Старший байт верхнего порога данных ADC0 11.7.7 ADC0GTL 0xC3 11.7.8 Младший байт верхнего порога данных ADC0

ADC0H	0xBE	Старший байт данных ADC0	11.7.4
ADC0L	0xBD	Младший байт данных ADC0	11.7.5
ADC0LTH	0xC6	Старший байт нижнего порога данных АДС0	11.7.9
ADC0LTL	0xC5	Младший байт нижнего порога данных ADC0	11.7.10
AMX0N	0xBA	Выбор отрицательных мультиплексора MUX ADC0	11.7.2
AMX0P	0xBB	Выбор положительных каналов мультиплексора MUX ADC0	11.7.1
В	0xFO	Регистр В	3.6.25
CKCON	0x8E	Регистр управления тактовой частотой таймеров	11.7.34
CLKSEL	0xA9	Регистр выбора генератора	12.7.13
CPT0CN	0x9B	Управление компаратором 0	11.7.13
CPT0MD	0x9D	Выбор режима компаратора 0	11.7.15
CPT0MX	0x9F	Выбор режима мультиплексора компаратора 0	11.7.14
CPT1CN	0x9A	Управление компаратором 1	11.7.13
CPT1MD	0x9C	Выбор режима компаратора 1	11.7.15
CPT1MX	0x9E	Выбор режима мультиплексора компаратора 1	11.7.14
CLKMUL	0xB9	Регистр управления умножителем	12.7.12
DPH	0x83	Старший байт указателя данных	3.6.22
DPL	0x82	Младший байт указателя данных	3.6.21
EIE1	0xE6	Разрешение дополнительных прерываний 1	12.7.6
EIE2	0xE7	Разрешение дополнительных прерываний 2	12.7.8
EIP1	0xF6	Приоритеты дополнительных прерываний 1	12.7.7
EIP2	0xF7	Приоритеты дополнительных прерываний 2	12.7.9
EMI0CN	0xAA	Управление интерфейсом внешней памяти	11.7.26
FLKEY	0xB7	Ограничение доступа Flash	6.6.36
FLSCL	0xB6	Управление временем доступа к Flash	11.7.25
IE	0xA8	Разрешение прерываний	12.7.4
IP	0xB8	Управление приоритетами прерываний	12.7.5
IT01CF	0xE4	Конфигурация INT0/INT1	11.7.20
OSCICL	0xB3	Калибровка встроенного генератора	6.6.32
OSCICN	0xB2	Управление внутренним генератором	12.7.11
OSCXCN	0xB1	Управление внешним генератором	6.6.35
P0	0x80	Выходной регистр Port 0	3.6.45
P0MDIN	0xF1	Режим конфигурации входов порта 0	11.7.30
P0MDOUT	0xA4	Регистр режима вывода порта 0	11.7.31
P0SKIP	0xD4	Режим пропусков порта 0	11.7.32
P1	0x90	Выходной регистр Port 1	3.6.47
P1MDIN	0xF2	Регистр режима ввода порта 1	11.7.30
P1MDOUT	0xA5	Регистр режима вывода порта 1	11.7.31
P1SKIP	0xD5	Режим пропусков порта 0	11.7.32
P2	0xA0	Выходной регистр Port 2	3.6.50
P2MDIN	0xF3	Регистр режима ввода порта 2	11.7.30
P2MDOUT	0xA6	Регистр режима вывода порта 2	11.7.31
P2SKIP	0xD6	Режим пропусков порта 2	11.7.32
P3	0xB0	Выходной регистр Port 3	3.6.52
P3MDIN	0xF4	Регистр режима ввода порта 3	11.7.30
P3MDOUT	0xA5	Регистр режима вывода порта 3	11.7.31
PCA0CN	0xD8	Управление программируемым счетчиком-массивом 0 Control (PCA)	3.6.82
PCA0CPH0	0xFC	Старший байт модуля захвата 0 РСА	6.6.72

PCA0CPH1	0xEA	Старший байт модуля захвата 1 РСА	6.6.72
PCA0CPH2	0xEC	Старший байт модуля захвата 2 РСА	6.6.72
PCA0CPH3	0xEE	Старший байт модуля захвата 3 РСА	6.6.72
PCA0CPH4	0xFE	Старший байт модуля захвата 4 РСА	6.6.72
PCA0CPL0	0xFB	Младший байт модуля захвата 0 РСА	6.6.71
PCA0CPL1	0xE9	Младший байт модуля захвата 1 РСА	6.6.71
PCA0CPL2	0xEB	Младший байт модуля захвата 2 РСА	6.6.71
PCA0CPL3	0xED	Младший байт модуля захвата 3 РСА	6.6.71
PCA0CPL4	0xFD	Младший байт модуля захвата 4 РСА	6.6.71
PCA0CPM0	0xDA	РСА модуль захвата/сравнения 0	6.6.68
PCA0CPM1	0xDB	РСА модуль захвата/сравнения 1	6.6.68
PCA0CPM2	0xDC	РСА модуль захвата/сравнения 2	6.6.68
PCA0CPM3	0xDD	РСА модуль захвата/сравнения 3	6.6.68
PCA0CPM4	0xDE	РСА модуль захвата/сравнения 4	6.6.68
PCA0H	0xFA	Старший байт данных РСА	6.6.70
PCA0L	0xF9	Младший байт данных РСА	6.6.69
PCA0MD	0xD9	Регистр управления режимом РСА	6.6.67
PCON	0x87	Управление питанием	11.7.21
PSCTL	0x8F	Управление R/W к памяти программ	11.7.24
PSW	0xDO	Слово состояния программы	3.6.23
REG0CN	0xC9	Регистр управления регулятором напряжения	12.7.1
REF0CN	0xDl	Управление источником опорного напряжения 0	11.7.11
RSTSRC	0xEF	Управление источниками сброса	12.7.10
SBUF0	0x99	Буфер данных последовательного порта 0 (UART0)	3.6.63
SCON0	0x98	Управление последовательным портом 0 (UART0)	11.7.33
SMB0CF	0xCl	Конфигурация SMBus 0	8.6.25
SMB0CN	0xC0	Управление SMBus 0	8.6.26
SMB0DAT	0xC2	Данные SMBus 0	3.6.56
SP	0x81	Указатель стека	3.6.20
SPI0CFG	0xA1	Конфигурация последовательного периферийного интерфейса (SPI)	6.6.54
SPI0CKR	0xA2	Управление скоростью SPI	3.6.61
SPI0CN	0xF8	Управление шиной SPI	6.6.55
SPI0DAT	0xA3	Данные SPI	3.6.62
TCON	0x88	Управление таймерами/счетчиками	3.6.65
TH0	0x8C	Старший байт данных таймера/счетчика 0	3.6.70
TH1	0x8D	Старший байт данных таймера/счетчика 1	3.6.71
TL0	0x8A	Младший байт данных таймера/счетчика 0	3.6.68
TL1	0x8B	Младший байт данных таймера/счетчика 1	3.6.69
TMOD	0x89	Режимы таймеров счетчиков	3.6.66
TMR2CN	0xC8	Регистр управления таймера 2	8.6.29
TMR2H	0xCD	Старший байт таймера 2	8.6.33
TMR2L	0xCC	Младший байт таймера 2	8.6.32
TMR2RLH	0xCB	Старший байт регистра перезагрузки таймера 2	8.6.31
TMR2RLL	0xCA	Младший байт регистра перезагрузки таймера 2	8.6.30
TMR3CN	0x91	Регистр управления таймера 3	11.7.35
TMR3H	0x95	Старший байт таймера 3	11.7.39
TMR3L	0x94	Младший байт таймера 3	11.7.38
TMR3RLH	0x93	Старший байт регистра перезагрузки таймера 3	11.7.37

TMR3RLL	0x92	Младший байт регистра перезагрузки таймера 3	11.7.36
USB0ADR	0x96	Регистр адреса интерфейса USB	12.7.17
USB0DAT	0x97	Регистр данных интерфейса USB	12.7.18
USB0XCN	0xD7	Регистр управления интерфейса USB	12.7.16
VDM0CN	0xFF	Регистр управления монитором питания	11.7.22
XBR0	0xEl	Конфигурация коммутатора ресурсов (Crossbar) 0	11.7.28
XBR1	0xE2	Конфигурация коммутатора ресурсов (Crossbar) 1	11.7.29

12.6. Регистры SFR

Управление и обмен данными с всей аналоговой и цифровой периферией микроконтроллеры семейства C8051F32x осуществляют через регистры SFR. Ниже приводится описание регистров только базового основного микроконтроллера C8051F320. Следует отметить, что семейство является развитием семейства C8051F31x, и соответственно, практически все регистры имеют те же функции. Для регистров, описание которых полностью совпадает с описанием регистров других семейств, даются ссылки на соответствующие разделы в таблице 12.6. Кроме того, в этом разделе будут даны описания некоторых функциональных узлов, отличающихся от приведенных в главе 2 или отсутствующих в ней.

12.7. Описание новых регистров

12.7.1. REG0CN – Регистр управления регулятором напряжения

Семейство микроконтроллеров C8051F32x оснащено встроенным регулятором (стабилизатором) напряжения, который преобразует входное напряжение (от 4.0 до 5.25 В) в напряжение питания ядра микроконтроллера +3.3 В.

Название регистра:			REG0CN – Voltage Regulator Control						
SFR адрес / страница:			0хС9 Значение по			осле сброса:	0000000	00b (0x00)	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	REGDIS	VBSTAT	VBPOL	REGMOD	-	-	-	-	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	-

- Бит 7: REGDIS Voltage Regulator Disable бит разрешения (0) или запрещения (1) встроенного регулятора напряжения;
- Бит 6: VBSTAT VBUS Signal Status бит состояния линии VBUS интерфейса USB. Если интерфейс подключен к сети USB то VBSTAT=0, иначе 1;
- Бит 5: VBPOL VBUS Interrupt Polarity Select бит выбора полярности прерывания по VBUS, если бит 0, то прерывание вырабатывается при VBUS=0;
- Бит 4: REGMOD Voltage Regulator Mode Select выбор режима регулятора: 0 нормальный режим, 1 режим энергосбережения;
- Биты 3-0 не используются, читаются как 0000b, при записи должны быть нулями.

12.7.2. Организация памяти семейства C8051F32x

Организация памяти семейства C8051F32x аналогична организации памяти других семейств микроконтроллеров фирмы Cygnal. Структура памяти показана на рис.12.6

DATA MEMORY (RAM) PROGRAM/DATA MEMORY INTERNAL DATA ADDRESS SPACE (FLASH) 0xFF Upper 128 RAM Special Function RESERVED 0x3E00 (Indirect Addressing Register's (Direct Addressing Only) Only) 0x3DFF 0x80 0x7F (Direct and Indirect Addressing) Lower 128 RAM 16K FLASH 0x30 (Direct and Indirect 0x2F Addressing) Bit Addressable (In-System 0x20 Programmable in 512 0x1F General Purpose Byte Sectors) Registers 0x00 EXTERNAL DATA ADDRESS SPACE 0x0000 0xFFFF Same 2048 bytes as from 0x0000 to 0x07FF, wrapped on 2K-byte boundaries 0x0800 0x07FF **USB FIFOs** 1024 Bytes 0x0400 0x03FF XRAM - 1024 Bytes (accessable using MOVX

Рис.12.6. Структура памяти семейства C8051F32x

12.7.3. Вектора прерываний микроконтроллеров семейства C8051F32x

0x0000

Вектора прерываний микроконтроллеров семейства C8051F32x приведены в таблице 12.7. Более подробные сведения приведены в [18].

instruction)

Таблица векторов прерываний семейства C8051F32x

Таблица 12.7

Источник прерывания	Вектор прерывания	Приоритет	Разрешающий флаг	Управление при- оритетом
Сброс	0x0000	Высший	Всегда разрешен	Всегда высший
Внешнее прерывание 0 (INT0/)	0x0003	0	EX0 (IE.0)	PX0 (IP.0)
Переполнение таймера 0	0x000B	1	ET0 (IE.1)	PT0 (IP.1)
Внешнее прерывание 1 (INT1/)	0x0013	2	EX1 (IE.2)	PX1 (IP.2)
Переполнение таймера 1	0x001B	3	ET1 (IE.3)	PT1 (IP.3)
Последовательный порт 0 UARTO	0x0023	4	ES0 (IE.4)	PS0 (IP.4)
Переполнение таймера 2	0x002B	5	ET2 (IE.5)	PT2 (IP.5)
Интерфейс SPI	0x0033	6	ESPI0 (IE.6)	PSPI0 (IP.6)
Интерфейс SMBus	0x003B	7	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
Интерфейс USB	0x0043	8	EUSB0 (EIE1.1)	PUSB0 (EIP1.1)
Компаратор «окна» ADC0	0x004B	9	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)

Завершение преобразования АДС0	0x0053	10	EADC0 (EIE1.3)	PADC0 (EIP1.3)
Программируемый счетчик/массив РСА	0x005B	11	EPCA0 (EIE1.4)	PPCA0 (EIP1.4)
Прерывание компаратора 0	0x0063	12	ECP0 (EIE1.5)	PCP0 (EIP1.5)
Прерывание компаратора 1	0x006B	13	ECP1 (EIE1.6)	PCP1 (EIP1.6)
Переполнение таймера 3	0x0073	14	ET3 (EIE1.7)	PT3 (EIP1.7)
VBUS уровень	0x007B	15	EVBUS (EIE2.0)	PVBUS (EIP2.0)

12.7.4. ІЕ - Основной регистр разрешения прерываний

Ha	звание регис	стра:	IE - Interrupt	Enable					
SF	R адрес:		0xA8		Значение п	осле сброса:	0000000	00000000b (0x00)	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
	EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

- Бит 7: EA Enable All Interrupts разрешение (1) всех прерываний.
- Бит 6: ESPI0 Enable SPI0 Interrupt флаг разрешения прерывания интерфейса SPI0.
- Бит 5: ET2 Enable Timer 2 Interrupt разрешение (1) прерывания от таймера 2.
- Бит 4: ESO Enable UARTO Interrupt разрешение (1) прерывания от последовательного порта.
- Бит 3: ET1 Enable Timer 1 Interrupt разрешение (1) прерывания от таймера 1.
- Бит 2: EX1 Enable External Interrupt 1 разрешение (1) прерывания от внешнего источник прерываний 1 с вывода INT1/.
- Бит 1: ETO Enable Timer 0 Interrupt разрешение (1) прерывания от таймера 0.
- Бит 0: EX0 Enable External Interrupt 0 разрешение (1) прерывания от внешнего источник прерываний 0 с вывода INT0/.

12.7.5. ІР - Основной регистр приоритетов

Ha	звание регис	стра:	IP - Interrupt Priority						
SF	SFR адрес:		0xB8		Значение п	осле сброса:	0000000	00000000b (0x00)	
			_		_				
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
	-	PSPI0	PT2	PS0	PT1	PX1	PT0	PX0	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	=

- Бит 7 не используются.
- Бит 6: PSPI0 SPI0 Interrupt Priority Control бит управления приоритетом интерфейса SPI0. Высший приоритет устанавливается 1, приоритет по умолчанию 0.
- Бит 5: PT2 Timer 2 Interrupt Priority Control бит управления приоритетом таймера 2. Высший приоритет устанавливается 1, приоритет по умолчанию 0.
- Бит 4: PS Serial Port (UART) Interrupt Priority Control бит управления приоритетом последовательного порта. Высший приоритет устанавливается 1, приоритет по умолчанию 0.
- Бит 3: PT1 Timer 1 Interrupt Priority Control бит управления приоритетом таймера 1. Высший приоритет устанавливается 1, приоритет по умолчанию 0.
- Бит 2: PX1 External Interrupt 1 Priority Control бит управления приоритетом внешнего источника прерываний 1. Высший приоритет устанавливается 1, приоритет по умолчанию 0.
- Бит 1: PT0 Timer 0 Interrupt Priority Control бит управления приоритетом таймера 0. Высший приоритет устанавливается 1, приоритет по умолчанию 0.

Бит 0: PX0 - External Interrupt 0 Priority Control - бит управления приоритетом внешнего источника прерываний 0. Высший приоритет устанавливается 1, приоритет по умолчанию - 0.

12.7.6. ЕІЕ1 - Дополнительный регистр разрешения прерываний 1

Название регистра:			EIE1 - Exten	ded Interrupt	Enable 1				
SFR адрес / страница:			0хЕ6 Значение после сброса:			0000000	00000000b (0x00)		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
	ET3	ECPI	ECP0	EPCA0	EADC0	EWADC0	EUSB0	ESMB0	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	•

Примечание: Установка любого из битов разрешает прерывание, обнуление - запрещает.

- Бит 7: ET3 Enable Timer 3 Interrupt разрешение (1) прерывания таймера 3;
- Бит 6-5: ECP1(0) Enable Interrupt of Comparator1(0) бит разрешения прерывания (1) при перепаде на выходе компараторов 1(0);
- Бит 4: EPCA0 Enable Programmable Counter Array (PCA0) Interrupt бит разрешения прерывания от программируемого массива-счетчика 0.
- Бит 3: EADC0 Enable ADC0 End of Conversion Interrupt бит разрешения прерывания ADC0;
- Бит 2: EWADC0 Enable Window Comparison ADC0 Interrupt бит разрешения прерывания от "окна" аналого-цифрового преобразователя 0.
- Бит 1:. EUSB0 Enable USB 0 Interrupt бит разрешения прерывания от интерфейса USB.
- Бит 0: ESMB0 Enable SMBus 0 Interrupt бит разрешения прерывания от интерфейса SMBus.

12.7.7. ЕІР1 - Дополнительный регистр приоритетов 1

Ha	звание регис	тра:	EIP1 - Extend	ded Interrupt	Priority 1				
SF	R адрес / стр	аница:	0xF6		Значение п	Значение после сброса:		00000000b (0x00)	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PUSB0	PSMB0	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	•

Примечание: Установка любого из битов означает присвоение высокого приоритета, обнуление - низкого приоритета.

- Бит 7: PT3 Timer 3 Interrupt Priority Control бит определения уровня приоритета таймера 3.
- Бит 6: PCP1 Comparator 1 (CP1) Interrupt Priority Control бит определяет уровень приоритета компаратора 1.
- Бит 5: PCP0 Comparator 0 (CP0) Interrupt Priority Control бит определяет уровень приоритета компаратора 0.
- Бит 4: PPCA0 Programmable Counter Array (PCA0) Interrupt Priority Control бит определяет уровень приоритета программируемого массива-счетчика 0.
- Бит 3: PADC0 ADC End of Conversion Interrupt Priority Control бит определения уровня приоритета ADC0.
- Бит 2: PWADC0 ADC0 Window Comparator Interrupt Priority Control бит определяет уровень приоритета функции "окна" аналого-цифрового преобразователя ADC0.
- Бит 1: PUSB0 USB 0 Interrupt Priority Control бит определяет уровень приоритета интерфейса USB.
- Бит 0: PSMB0 SMBus 0 Interrupt Priority Control бит определяет уровень приоритета интерфейса SMBus.

12.7.8. EIE2 - Дополнительный регистр разрешения прерываний 2

Ha	звание реги	стра:	EIE2 - Extended Interrupt Enable 2							
SFR адрес:			0xE7		Значение	после сброса:	000000	00b (0x00)		
	D AY D AY		DAY DAY		D 444		D/III	DAN		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	ı	-	-	-	-			EVBUS		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

Примечание: Установка любого из битов разрешает прерывание, обнуление - запрещает.

Биты 7-1 – не используются;

Бит 0: EVBUS - Enable VBAU Level Interrupt - бит разрешения прерывания от состояния линии VBUS интерфейса USB.

12.7.9. ЕІР2 - Дополнительный регистр приоритетов 2

Ha	звание реги	стра:	EIP2 - Exter	ded Interrupt	Priority 2				
SFR адрес:			0xF7 Значение после о			после сброса:	ea: 00000000b (0x00)		
	R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W	
	-	-	-	-	-	-	-	PVBUS	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	-

Примечание: Установка любого из битов означает присвоение высокого приоритета, обнуление - низкого приоритета.

Биты 7-1 – не используются;

Бит 0: PVBUS - VBUS Interrupt Priority Control - бит определяет уровень приоритета прерывания состояния линии VBUS интерфейса USB.

12.7.10. RSTSRC - Регистр источников сброса

namana na na										
Ha	звание регис	стра:	RSTSRC - R	eset Source I	Register					
SF	R адрес:		0xEF		Значение п	осле сброса:	XXXXXXX	xxxxxxx		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	USBRSF	FERROR	C0RSEF	SWRSEF	WDTRST	MCDREF	PORSF	PINRSF		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	•	

- Бит 7: USB Reset Flag флаг сброса USB. При чтении: 0 последний сброс не сбросил USB / 1 последний сброс сбросил и USB. При записи: 0 сброс USB запрещен / 1 сброс USB разрешен;
- Бит 6: FERROR Flash Error Indicator появление 1 свидетельствует о том, что со времени последнего сброса была обнаружена ошибка чтения/записи/стирания Flash памяти.
- Бит 5: CORSEF Comparator 0 Reset Enable and Flag бит разрешения и флаг сброса от компаратора 0. При записи: 1 разрешает (0 запрещает) использование компаратора 0 в качестве источника сброса при низком логическом уровне на выходе. При чтении: логическая 1 означает, что предыдущий сброс произошел от компаратора 0, соответственно, логический 0 означает, что сброс произошел от другого источника.
- Бит 4: SWRSF Software Reset Force and Flag бит / флаг программного сброса. При записи 1 отключается внешний вход сброса RST/. При чтении: 1 означает, что сброс произошел от записи в SWRSF бит.
- Бит 3: WDTRSF Watchdog Timer Reset Flag флаг сброса охранного таймера. Логическая 1 означает, что предыдущий сброс произошел от WDT.
- Бит 2: MCDRST Missing Clock Detector Flag флаг отсутствия тактирования. Логическая 1 при чтении означает, что предыдущий сброс произошел от отсутствия тактовой частоты.

- Бит 1: PORSF Power-On Reset Force and Flag флаг сброса после включения питания. Логическая 1 при чтении означает, что предыдущий сброс произошел после включения питания. Запись 1 вызывает сброс и переводит вход RST/ в низкий логический уровень, чтение 1 означает что предыдущий сброс произошел после включения питания.
- Бит 0: PINRSF HW Pin Reset Flag -флаг вывода RST/. При чтении 1 означает, что последний сброс произошел от вывода RST/.

12.7.11. OSCICN - Регистр управления внутренним тактовым генератором

Ha	звание регис	тра:	OSCICN - In	OSCICN - Internal Oscillator Control Register						
SF	R адрес / стр	аница:	0хВА / F Значение после сброса:			000000	00000000b (0x00)			
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	IOSCEN	IFRDY	SUSPEND	-	-	-	IFCN1	IFCN0		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	1	

- Бит 7: IOSCEN Internal Oscillator Enable Bit бит разрешения внутреннего генератора (1 разрешен).
- Бит 6: IFRDY Internal Oscillator Frequency Ready Flag флаг готовности внутреннего генератора, устанавливается в 1 после нормального запуска внутреннего генератора на частоте, установленной IFCN битами.
- Бит 5: SUSPEND запись 1 останавливает внутренний генератор. Генератор запускается при следующей пересылке по интерфейсу USB или по прерыванию VBUS.
- Биты 4-2 зарезервированы.
- Биты 1-0: IFCN Internal Oscillator Frequency Control Bits биты установки частоты внутреннего генератора:
 - 00 Системная тактовая частота определяется делением частоты внутреннего генератора на 8;
 - 01 Системная тактовая частота определяется делением частоты внутреннего генератора на 4;
 - 10 Системная тактовая частота определяется делением частоты внутреннего генератора на 2;
 - 11 Системная тактовая частота определяется делением частоты внутреннего генератора на 1.

12.7.12. CLKMUL - Регистр управления умножителем

Has	ввание регис	стра:	CLKMUL – Clock Multiplier Control Register							
SFI	SFR адрес / страница:		0xB9		Значение после сброса:		00000000b (0x00)			
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	MULEN	MULINIT	MULRDY	-	-	-	MU	MULSEL		
	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	-	

- Бит 7: MULEN Clock Multiplier Enable бит разрешения (1) умножителя;
- Бит 6: MULINIT Clock Multiplier Initialize бит инициализации. Бит должен быть 0 при установке MULEN. Бит аппаратно устанавливается в 1 при стабилизации умножителя;
- Бит 5: MULRDY Clock Multiplier Ready бит индикации состояния умножителя: 0 не готов, 1 готов и захват частоты произведен;
- Биты 4-2 не используются;
- Биты 1-0: MULSEL определяют источник частоты для умножителя:
 - 00 внутренний генератор;
 - 01 внешний генератор;
 - 10 внешний генератор / 2.

12.7.13. CLKSEL - Регистр выбора тактового генератора

Ha	звание регис	тра:	CLKSEL - O	CLKSEL - Oscillator Clock Selection Register							
SFR адрес / страница:			0xA9		Значение п	осле сброса:	000000	00000000b (0x00)			
	R R		R	R	R	R	R	R/W			
	-		USBCLK		-	-	CL	KSL			
Bit 7 Bit 6			Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_		

Биты 6-4: USBCLK - биты выбора тактового генератора для USB. Для USB в режиме полной скорости частота должна быть 48 МГц, для экономичного режима – 6 МГц:

- 000 Умножитель на 4;
- 001 внутренний генератор /2:
- 010 внешний генератор;
- 011 внешний генератор /2;
- 100 внешний генератор /3;
- 101 внешний генератор /4;

Биты 1-0: CLKSL – биты выбора источника системной тактовой частоты:

- 00 внутренний генератор;
- 01 внешний генератор;
- 10 частота умножителя на четыре /2.

12.7.14. Коммутатор ресурсов Crossbar

Коммутатор ресурсов Crossbar семейства C8051F32x реализован также, как и в семействе C8051F31x (см. рис.11.9)

12.7.15. Интерфейс USB

Микроконтроллеры семейства C8051F32х оснащены аппаратно реализованным интерфейсом USB (спецификация 2.0), способным работать как в режиме полной скорости (частота тактирования - 48 МГЦ), так и режиме малой скорости (частота тактирования - 6 МГЦ). Кроме того, для работы интерфейса USB в пространстве дополнительной памяти имеется буфер памяти объемом 1 К. Возможности интерфейса USB микроконтроллеров семейства C8051F32х и особенности работы с ним - тема достаточно обширная и не будут рассматриваться в рамках этой книги ввиду ограничения на объем книги. Отметим только, что интерфейс USB этого семейства не может быть использован в качестве ведущего (Host) устройства. Подробно с этим вопросом можно ознакомиться в [18] и других публикациях. Далее мы только приведем описания регистров SFR, связанных с обслуживанием интерфейса USB.

12.7.16. USB0XCN - Регистр управления обменом USB

			· rerrery		OUNITATION CO	_			
Ha	звание регис	стра:	USBXCN -	USB0 Transo	ceiver Control	1			
SF	R адрес:		0xD7 Значение после сб			осле сброса:	ca: 00000000b (0x00)		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	PREN	PHYEN	SPEED	PHYTST1	PHYTST0	DFREC	Dp	Dn]
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

- Бит 7: PREN Internal Pull-up Resistor Enable бит разрешения подтягивающего резистора. Положение подтягивающего резистора (линия D+ или D-) определяется значением бита SPEED. Если бит очищен (0) резистор отключен эффективное отключение от USB сети. Если бит установлен (1) резистор подключен интерфейс подключен к сети.
- Бит 6: PHYEN Physical Layer Enable бит разрешения (1) / запрещения (0) физического уровня.
- Бит 5: SPEED USB Speed Select бит выбора скорости. 0 низкая скорость (подтягивающий резистор подключается к линии D-). 1 высокая скорость (подтягивающий резистор подключается к линии D+).

Биты 4-3 - PHYTST1-0 -Physical Layer Test - биты определяют тестовый режим:

PHYTST	Режим	D+	D-
00	0 - Нормальный рабочий режим	X	X
01	1 - Принудительная дифференциальная 1	1	0
10	2 - Принудительный дифференциальный 0	0	1
11	3 - Принулительное завершение	0	0

- Бит 2: DFREC Differential Receiver состояние дифференциального приемника (0 на линии 0).
- Бит 1: Dp D+ Signal Status состояние линии D+ (0 на линии 0).
- Бит 0: Dn D- Signal Status состояние линии D- (0 на линии 0).

12.7.17. USB0ADR - Регистр косвенного адреса USB

Название регистра:			USB0ADR – USB0 Indirect Address Register						
SFR адрес:		0xD7		Значение после сброса:		00000000b (0x00)			
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	BUSY	AUTORD			USBADDR				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	•

- Бит 7: BUSY USB Register Read Busy Flag Флаг занятости чтения USB. Бит должен быть программно установлен в 1 для инициации чтения регистра USB, определенного битами USBADDR. Биты BUSY и USBADDR могут быть записаны одновременно. После программной установки бита BUSY, он аппаратно очищается при готовности данных в регистре USB0DAT. При записи:
 - 0 игнорируется;
 - 1 инициализировано чтение из регистра с адресом USBADDR.

При чтении:

- 0 USB0DAT регистр готов к чтению;
- 1 USB занят. Данные в USB0DAT регистре не готовы;
- Бит 6: AUTORD USB Register Auto-Read Flag флаг авто чтения (используется для блочного чтения FIFO памяти:
 - 0 Бит BUSY должен быть записан программно перед каждым косвенным чтением регистра;
 - 1 Автоматическое чтение. Адрес обновлять не нужно.

Биты 5-0: USBADDR - USB Indirect Register Address - косвенный адрес.

12.7.18. USB0DAT - Регистр данных USB

Название реги	стра:	USB0DAT -	USB0 Data	Register					
SFR адрес: 0х97 Значение после сброса:		00000000b (0x00)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	USB0DAT								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

Регистр чтения / записи данных интерфейса USB.

12.7.19. Понятия о USB регистрах интерфейса

Описанный выше регистры SFR используются для косвенного доступа (чтения и записи) к регистрам USB контроллера. Фирма Cygnal рекомендует следующие последовательности действий при чтении или записи регистров.

Процедура записи:

- 1. Дождаться готовности USB, ожидая пока бит BUSY (USB0ADR.7) станет равным 0.
- 2. Загрузить адрес регистра в биты USBADDR регистра USB0ADR.
- 3. Записать данные в регистр USB0DAT.
- 4. Повторять запись (шаг 2 может быть пропущен при записи по одному и тому же адресу).

Процедура чтения:

- 1. Дождаться готовности USB, ожидая пока бит BUSY (USB0ADR.7) станет равным 0.
- 2. Загрузить адрес регистра в биты USBADDR регистра USB0ADR.
- 3. Записать 1 в бит BUSY (USB0ADR.7)
- 4. Дождаться готовности USB, ожидая пока бит BUSY (USB0ADR.7) станет равным 0.
- 5. Прочитать данные из регистра USB0DAT.
- 6. Повторять запись (шаг 2 может быть пропущен при чтении по одному и тому же адресу, шаг 3 может быть пропущен, когда бит AUTORD (USB0ADR.6) =1.

Более подробное описание интерфейса USB и описания регистров контроллера USB приведены в [18].

12.8. Достоинства и недостатки семейства C8051F32x

Семейство микроконтроллеров C8051F32x также, как и предыдущее, относится к группе "малоразмерных" микроконтроллеров (F30x, F31x, F32x, F33x). Оно практически полностью повторяет семейство C8051F31x, за исключением нескольких добавленных узлов. Главное отличие этого семейства наличие аппаратно реализованного интерфейса USB (спецификация 2). Кроме этого в группу аналоговых узлов добавлен аналоговый регулятор напряжения, позволяющий микроконтроллеру работать при напряжении питания от 4.0 до 5.25 В. Еще одна особенность: количество каналов 10-разрядного аналого-цифрового преобразователя несколько уменьшено - до 17(13)-каналов.

Семейство имеет 16К встроенной Flash памяти, 256+1К оперативной памяти+1К буферной памяти для интерфейса USB.

На сегодняшний день это семейство является самым мощным по составу аналоговой и цифровой периферии среди "малоразмерных" микроконтроллеров.